인공지능
사이킷런
scikit-learn
VotingClassifier
사이킷런 VotingClassifier(다수결 투표)
머신러닝에는 수많은 모델이 있고 그 모델들은 각각의 장단점이 있습니다. 이런 장단점을 보완하기 위해서 여러 모델을 동시에 훈련시켜 결합하는 앙상블 기법이 많이 사용되고 있습니다. 앙상블 기법을 …
인공지능
사이킷런
scikit-learn
metrics
머신러닝 분류 모델의 정확도, 재현율 그리고 F1-Score
분류 모델의 성능을 평가하는 지표는 다양합니다. 이번 포스트에서는 분류 모델의 성능을 평가하는 지표 몇가지를 알아보도록 하겠습니다.
1. 정확도
제일 보편적이고 간단한 지표는 바로 정확도 입니다. …
인공지능
사이킷런
scikit-learn
GridSearch
사이킷런 그리드서치를 통한 파라미터 튜닝, 중첩 교차 검증으로 모델 평가
머신러닝에서는 모델 자체의 파라미터(하이퍼파라미터)들이 있어서 이것을 데이터에 적합한 값으로 정해주어야 합니다. 어떤 파라미터가 적합할지 알아내는 방법은 여러가지가 있습니다. 검증 곡선을 분석해서 파라미터를 정할 수도 있을 …
인공지능
사이킷런
scikit-learn
학습 곡선
검증 곡선
사이킷런 학습 곡선, 검증 곡선으로 모델의 과대적합, 과소적합 조사하기
모델이 높은 편향을 가지면 모델이 너무 단순해서 데이터에 과소적합 되었다는 것을 의미합니다. 이는 모델을 더 복잡하게 만들거나 훈련에 사용하는 데이터의 양을 늘려야 합니다.
모델이 높은 …
인공지능
사이킷런
scikit-learn
K-fold
K-겹 교차 검증 (K-fold)를 통한 머신러닝 모델 평가
머신러닝 모델을 구축하는 과정에서 반드시 필요한 과정이 바로 모델을 평가하는 과정입니다. 모델을 만들고 평가한 뒤 그 결과를 바탕으로 다시 모델을 수정하고 구축할 수 있기 때문이죠. …